HPFS® Standard Grade, Corning code 7980, is a high purity synthetic amorphous silicon dioxide manufactured by flame hydrolysis. The noncrystalline, colorless, silica glass combines a very low thermal expansion coefficient with excellent optical qualities and exceptional transmittance in the ultraviolet. It is available in a number of grades for different applications.

In order to satisfy the challenging quality requirements of our customers in leading edge applications such as microlithography, Corning is dedicated to continuous improvement. The investments in research and development, combined with Corning's quality systems, support our technology leadership position and ensure that we meet our customer's requirements on time, every time.

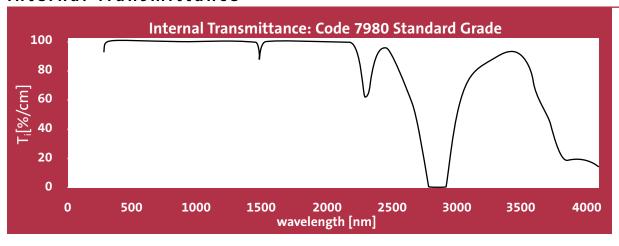
Quality Grade Selection Chart—HPFS° Standard Grade

Corning defines and certifies the quality of HPFS® glass using three criteria: grade, inclusions and homogeneity

Inclusion Class ^{1,2}			Homogeneity ^{3,4}							
	al Inclusion oss Section	Maximum Size	AA ≤ 0.5	A ≤ 1	B ≤ 1.5	c ≤ 2	D ≤ 3	E ≤ 4	F ≤ 5	G NS
0 1 2 3 4 5	≤ 0.03 ≤ 0.10 ≤ 0.25 ≤ 0.50 ≤ 1.00 ≤ 2.00	0.10 0.28 0.50 0.76 1.00 1.27	✓ ·	<i>y</i>	<i>J J</i>	\frac{1}{2}	\ \ \ \ \	\ \ \ \ \	\ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Notes:

- 1. Defines the sum of the cross section in mm² of inclusions per 100 cm³ of glass. Inclusions with a diameter ≤ 0.10 mm are disregarded.
- 2. Refers to the diameter of the largest single inclusion.
- 3. Index homogeneity: the maximum index variation (relative), measured over the clear aperture of the blank.
- 4. Index homogeneity is certified using an interferometer at 632.8 nm. The numerical homogeneity is reported as the average through the piece thickness. Blanks with a diameter up to 450 mm will be analysed over the full aperture. Larger parts will be analysed using multiple overlapping apertures. The minimum thickness for index homogeneity verification is 20.3 mm. For thinner parts, the parent piece is certified.


Mechanical and Thermal Properties: Unless otherwise stated, all values @ 25°C

Elastic (Young's) Modulus	72.7 GPa	Softening Point	1585°C (10 ^{7.6} poises	\Box
		_	•	
Shear Modulus	31.4 GPa	Annealing Point	1042°C (1013 poises)
Modulus of Rupture, abraded	52.4 MPa	Strain Point	893°C (10 ^{14.5} poises)
Bulk Modulus	35.4 GPa	Specific Heat	0.770 J/g k	
Poisson's Ratio	0.16	Thermal Conductivity	1.30 W/m k	(
Density	2.201 g/cm ³	Thermal Diffusivity	0.0075 cm ² /s	5
Knoop Hardness (100 g load)	522 kg/mm²	Average C.T.E.	0.52 ppm/K 5°C-35°C	-
Compressive Strength	1.14 GPa		0.57 ppm/K 0°C-200°C	-
Tensile Strength	54 MPa		0.48 ppm/K	-
1				,

Chemical Durability and Impurities

Solution		Time	Weight Loss [mg/cm²]	Impurities	
5% HCI by weight	@95°C	24 h	<0.010	OH content (by weight):	800-1000 ppm
5% NaOH	@95°C	6 h	0.453	Impurities other than OH:	≤ 1000 ppb
0.02N NA ₂ CO ₃	@95°C	6 h	0.065		
0.02N H ₂ SO ₄	@95°C	24 h	<0.010		
Deionized H ₂ O	@95°C	24 h	0.015		
10% HF by weight	@25°C	20 m	0.230		
10% NH₄F*HF by weight	@25°C	20 m	0.220		

Internal Transmittance

HPFS* Standard Grade is certified to meet
Texternal ≥
80%/cm@185nm
(Tinternal ≥
88%/cm@185nm),
when measured through a polished, uncoated sample. A typical internal transmittance curve for HPFS*
Standard Grade fused silica is shown here.

Refractive Index and Dispersion

Data in 22°C in 760mm Hg Dry Nitrogen Gas

Wavelength [air]	Refractive Index *2	Thermal Coefficient	Polynomial Dispersion Equation Constants *1				
λ [nm]	n	$\Delta n/\Delta T^{*3}$ (ppm/K)	A ₀ 2.104025406				
1128.64	1.448870	9.6	A_1 -1.456000330 x 10 ⁻⁴ A_2 -9.049135390 x 10 ⁻³				
1064.00	1.449633	9.6	A ₃ 8.801830992 x 10 ⁻³				
1060.00	1.449681	9.6	A₄ 8.435237228 x 10 ⁻⁵				
1013.98 n _t	1.450245	9.6	A ₅ 1.681656789 x 10 ⁻⁶				
852.11 n _s	1.452469	9.7	A_6 -1.675425449 x 10^{-8} A, 8.326602461 x 10^{-10}				
706.52 n _r	1.455149	9.9	A ₇ 8.326602461 x 10 ⁻¹⁰				
656.27 n _c	1.456370	9.9	Sellmeier Dispersion Equation Constants *2				
643.85 n _{C′}	1.456707	10.0					
632.80 n _{He-Ne}	1.457021	10.0	B ₁ 0.68374049400				
589.29 n _D	1.458406	10.1	B ₂ 0.42032361300				
587.56 n _d	1.458467	10.1	B ₃ 0.58502748000 C ₂ 0.00460352869				
546.07 n _e	1.460082	10.2	C ₁ 0.00460352869 C ₂ 0.01339688560				
486.13 n _F	1.463132	10.4	C ₂ 64.49327320000				
479.99 n _{F'}	1.463509	10.4	3 0 11 13 2 13 2 13 2				
435.83 n _ջ	1.466701	10.6	Δn/ΔT Dispersion Equation Constants *3				
404.66 n _h	1.469628	10.8	6 0 200500				
365.01 n _i	1.474555	11.2	C _o 9.390590 C _c 0.235290				
334.15	1.479785	11.6	C ₁ 0.235290 C ₂ -1.318560 x 10 ⁻³				
312.57	1.484514	12.0	C ₂ 1.518500 x 10 C ₃ 3.028870 x 10 ⁻⁴				
308.00	1.485663	12.1	e3 3.020070 X 10				
248.30	1.508433	14.2	Other Optical Properties				
248.00	1.508601	14.2					
214.44	1.533789	17.0	ν _d 67.79				
206.20	1.542741	18.1	$v_{\rm e}$ 67.64 $n_{\rm e}$ - n _c 0.006763				
194.17	1.559012	20.4	$n_{F} - n_{C}$ 0.006763 $n_{E'} - n_{C'}$ 0.006802				
193.40	1.560208	20.5	Stress Coefficient 35.0 nm/cm MPa				
193.00	1.560841	20.6	*Striae ISO 101 10-4 Class 5/Thickness Direction				
184.89	1.575131	22.7	Birefringence ≤ 1nm/cm, lower specifications available				

^{*1} Polynomial Equation:

$$\begin{split} n^2 &= A_0 + A_1 \, \lambda^4 + A_2 \, \lambda^2 + A_3 \, \lambda^{-2} + A_4 \, \lambda^{-4} + A_5 \, \lambda^{-6} + A_6 \, \lambda^{-8} + A_7 \, \lambda^{-10} \text{ with } \lambda \text{ in } \mu\text{m} \\ n^2 - 1 &= B_1 \, \lambda^2 / (\lambda^2 - C_1) + B_2 \, \lambda^2 / (\lambda^2 - C_2) + B_3 \, \lambda^2 / (\lambda^2 - C_3) \text{ with } \lambda \text{ in } \mu\text{m} \\ dn/dT &= C_0 + C_1 \, \lambda^{-2} + C_2 \, \lambda^{-4} + C_3 \, \lambda^{-6} \text{ with } \lambda \text{ in } \mu\text{m} \end{split}$$

^{*2} Sellmeier Equation:

^{*3} dn/dT Equation:

^{*1} Lower specifications are available upon request.